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Abstract. The spherically averaged electron-pair intra-
cule (relative motion) /&(u) and extracule (center-of-mass
motion) d(R) densities are a couple of densities which
characterize the motion of electron pairs in atomic
systems. We study a generalized electron-pair density
g(q; a, b) that represents the probability density function
for the magnitude of two-electron vector ar; + br; of any
pair of electrons j and k to be ¢, where ¢ and b are
nonzero real numbers. In particular, i(u) = g(u;1, —1)
and d(R) =g(R;1}). It is shown that the scaling
property of the Dirac delta function and the inversion
symmetry of orbitals in atoms due to the central force
field generate several isomorphic relations in the elec-
tron-pair density ¢(g; a, b) with respect to the two
parameters ¢ and b. The approximate isomorphism
d(R) = 8h(2R) known in the literature between the
intracule and extracule densities is a special case of the
present results.
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Introduction

The motion of an electron pair in N-electron atoms
(N = 2) is characterized [1-3] by the spherically averaged
intracule (relative motion) density /(u),

h(u) = (dnu?) <Z Z O(u — [r; —1y) > (1)

=1 k=j11

and by the spherically averaged extracule (center-of-
mass motion) density d(R),

d(R) = (4nR*)~ <Z > SR

Jj=1 k=j+1

Ifj+l‘k|/2)> (2)

where 0(x) is the one-dimensional Dirac delta function
and the angular brackets () stand for the expectation

value over the wave function W(xj,...,xy) with
x; = (r;,0;) being the combined position-spin coordi-
nates of the electron j. The intracule density /A(u)
represents [1-3] the probability density function for the
relative distance |r; — r¢| of any pair of electrons j and k
to be u. It has been used in several physical and chemical
contexts particularly in relation to the electron correla-
tion problem (see references given in [2, 3, 5-8]). On the
other hand, the extracule density d(R) represents [1-3]
the probability density function for the center-of-mass
radius |r; + r¢|/2 of any pair of electrons j and k to be R.
The density was used to study the shell structure in some
atoms and bonding characteristics in simple molecules
(see references in [2, 3, 9-12]).

Recently, the distributions of the intracule /(u) and
extracule d(R) densities were examined [6, 7, 10, 11, 13]
in a systematic manner for the 102 ground-state neutral
atoms from He (Z =2) to Lr (Z = 103), where Z de-
notes atomic number. At the Hartree-Fock limit level, it
was found that for all the 102 atoms both the densities
h(u) and d(R) are monotonically decreasing functions
with a single maximum at u = 0 or R = 0. Moreover, an
approximate but interesting isomorphism

d(R) = 8h(2R) (3)

has been found empirically between the two densities in
the above numerical studies. The relative motion and the
center-of-mass motion of two particles are completely
independent. Nevertheless, the approximate relation at
Eq. (3) suggests that the coulombic binding in atomic
systems generates nontrivial relations between the
relative and center-of-mass motions of electrons.

To explore such relations, we study in the present
paper the mathematical structure of a generalized elec-
tron-pair density g(g; a, b) defined by

g(g;a,b) = (4nq’)” <Z Zéq—|ar,+brk|>> (4)

J=1 k=j+1

where a and b are nonzero real numbers. The density g(q;
a, b) represents the probability density function for the
magnitude of two-electron vector ar; + br; of any pair of



electrons Ji fand k to be ¢, and two particular cases g(u;1, —1)
and g(R;11) correspond to the intracule Ah(u) and
extracule d(R) densities, respectively. Based on a property
of the Dirac delta function, it will be first shown that the
density ¢g(g; a, b) is characterized by the ratio a/b, rather
than individual values of @ and b, for any wave functions.
For atomic systems expressed by multi-determinant wave
functions, we further find that the magnitude |a/b| of the
ratio is important for the space reflection symmetry of
orbitals due to the central force field. The approximate
isomorphism given by Eq. (3) is obtained as a special case
of the present general results. Hartree atomic units are
used throughout.

General scaling relations

For a nonzero real number ¢, the Dirac delta function
d(x) satisfies [14] a scaling relation

d(ex) = —d(x) (5)
Application of Eq. (5) to Eq. (4) yields a general relation

g(g;a.b) = |el*g(|clg; ac, be) (6a)

where ¢ is any nonzero real number. Two special cases of
Eq. (6a) for ¢ = 1/a and ¢ = 1/b are

9l:0,5) = |1| () :bl| o(is)

for any types of wave functions. The result is valid not
only for atoms but also for molecules. Equation (6b)
implies that apart from the scale factor |a| (or |b]), the
ratio b/a (or a/b) determines the shape of the electron-
pair density ¢g(q; a, b) as a function of ¢; individual
values of a and b are not important. Particular cases of
Eq. (6b) for the intracule /(u) and extracule d(R)
densities read

h(u) = g(u;1,-1) = g(u; —1,1)

d(R) = g(R;1,}) = 89(2R; 1,1)

(6b)

(7a)
(7b)

We define moments (g"),, of the electron-pair
density ¢(q; a, b) by

= 4n/ ”+2
0

Combination of Egs. (6a), (6b), and (8) then yields

9(q;a,b) (8)

(@) ) = 1l @) = lal™(@") (1,670
" n )
= [b"(q >(a/b,1)
which gives scaling relations
(") = <qn>(1,71) = <qn><71,1) (10a)
(R") ={d") 1212 =27 ) 1) (10b)

for the intracule (¥") and extracule (R") moments.
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In polar coordmates the three-dimensional Dirac
delta function o' >( ) satisfies [14]

Vr—r) = rlz(s(r —1)d(cos 0 — cos 0)3(¢p — ¢')
(11a)
B —r)=2n)" / ds exp[+i(r — ') - s (11b)

Then Eq. (4) can be rewritten as
o(q:a,b) = (4n /dQ <Z R arj+brk)]>
=1 k=j+1
= (27%)~! / ds 5*jo(qs) X (s;a, b) (12a)
0

where q = (¢,9Q,) with Q, = (0,, ¢,), ji(x) is the spherical
Bessel function of the ﬁrst kind, dnd

X(s;a,b) = (4n)”" / dQ
X <N2_:1 ZN: exp(—ias-rj)exp(—ibs~rk)> (12b)

Jj=1 k=j+1

in which s = (s, Q) with Q; = (0y, ¢,). The characteristic
function X(s; a, b) of g(g; a, b) satisfies

X(s;a,b) = sac,be | =X |a|s;1,é
| |’ a
:X(|b\s; 5,1)

Combination of Egs. (12a) and (13) again results in
Eqgs. (6a) and (6b).

(13)

Decomposition into orbital quadruplets

We consider an N-electron wave function W(xy,...,Xy)
expressed by a linear combination of Slater determinants
composed of a set of one-electron spin-orbitals, in which
the k-th spin-orbital is assumed to be a product of
orthonormal spatial ¥, (r) and spin #,.(c) functions.
Then the characteristic function X(s; a, b) is rearranged
(cf. [15]) as

X(s;a,b) (14a)

Zcm,uv H" S a b)

KApy

where the coefficient C;,, gathers the contributions
from the coefficients of two Slater determinants, spin
integrals, and the permutation parities of relevant spin-
orbitals. Note that C,;,, is independent of a and b. The
orbital component X (s; @, b) is defined by

X% (s;0,b) = (4) " / 0,17 (5a)f(—sib)  (14b)
fi(s;a) = /drexp(—i—ias-r)xﬁi(r)zﬁi(r)
= fi(=s;a) = f;.(s; —a) (14c)
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and satisfies scaling relations analogous to Eq. (13):
4 b
X sia) =3 (L acste ) = (Jalsin. )
—)(M(|b|s~E 1) (15)
v 7b )

Corresponding to Eq. (14a), the electron-pair density
g(q; a, b) is also decomposed into orbital components:

g(gia,b) = Cw gii(gia,b) (16a)
KAy
o (gsab) = (2%) " / ds jo(gs) X (s;a,b)  (16b)

0
Equations (15) and (16b) give

KA

3
g (g5 a,0) = |c[’g)(Iclg; ac, be)

1 oufa b s q a
= " i1 i 1) (17
() - ()

which is an orbital version of Egs. (6a) and (6b). For a
particular case of single-determinant Hartree-Fock wave
functions, Eqgs. (14a) and (16a) read

X(s;a,b) Z Z (X (sya,b) — d5(xc, ) g”(s;a,b)]
k=1 J=K+1
(18a)
N-1

N
g(gia,b) = > (955 (gia

k=1 A=K+1

— 0,(k, )94 (q3a, b))

(18b)

where d4(x, 4)is unity if the spin-orbitals x and 4 have the
same spin and is zero if they have different spins. In
the brackets of Egs. (18a) and (18b), the first terms are
“direct” contributions, while the second terms are
“exchange” contributions.

Isomorphism for atoms

We further restrict our discussion to an atomic system,
in which the spatial function v _(r) is given by a product
of radial R.(r) and spherical harmonic Y;_, (Q,) func-
tions:

Vie(r) = Rie(r) Yim, () (19)

For a vector s = (s, 05, ¢,), we have as = (as, 0y, ¢,) if

a > 0 while as = (|a|s,n — 0,, ¢, + m) if @ < 0, and the
space reflection symmetry [16] of a spherical harmonic is
Yin(m = 05, g + 1) = (=1) Vi (05, b,) (20)
Therefore, the plane wave expansion [16]

00

!
exp(tis 1) =4n Y 3" iilsr) ¥,

=0 m=—1

QS) Ylm (Q")

(21a)

is generalized to

00 /
exp(+ias - 1) :4nz Z isgn(a)]'ji(|alsr)

=0 m=-—

><Yzm( s) Vi (Q) (21b)

where sgn(x) is the signum function [17]. Substituting
Eqgs. (19) and (21b) into Eq. (14c) and performing the
angular integrations in Eq. (14c), we find

L+l

fra(s;a) = Van lisgn(a)]'V21 + 1
l:‘lt\*l/'.l
X CI(K? X)I/lfmﬁm,«,(QS) Wici(lals) (22a)
where
Wiei(s) = / dr r? Ji(sr) Ri.(r) R, (r) = W},.(s) (22b)

0
and c!(x; 1) = c!(l,mg; I;m;) is the Condon-Shortley
parameter [18]. Using Eq. (22a), the exphclt form of
X (s;a,b) [Eq. (14b)] for atomic systems is obtained as

uy
min(/+1;,0,+1y)
) /
X (s;a,b) = [—sgn(ab)] (21 4+ 1)
I=max(|lx—1;],|1,—1])
¢! (s 1)e! (s v) Wi (lals) W, (0ls)  (23)

if .+, +1,+ [, =even and m, — m, =m, — m,.
When these two conditions are not satisfied simulta-
neously, X**(s; a, b) vanishes. The two particular cases of

Eq. (23) are
in(21,,21;)
X5 (s;a,b) = 21+ 1) ¢ (155 )
( W)Wy (|als) Wy, (|b]s) (24a)
) L+
XS (s;a,b) = > [—sgn(ab)]' (21 + 1)
I=|l—1;]
x (e (1e; ) W, ([als) Wy (1BLs) (24b)

which appear in Eq. (18a) for single-determinant wave
functions. Note that the summations in Eqgs. (22a), (23),
(24a), and (24b) run over every other integers between
the specified values.

Since [, + [, + [, + [, =even, Eq. (23) means that
if [. + [, =even, the contribution of [—sgn(ab)]l is
always unity and hence

Xl (s:a,b) = Xyl (s:al, [b]) (25a)

g5 (q;a,b) = g% (g; |al, |b])
Namely, only the absolute values of the parameters a
and b are important for such orbital components, as in
the case of Eq. (24a). Moreover, the scaling relations
(Eq. 17) conclude that the magnitude |a/b| of the ratio of
the two parameters governs the shape of the orbital
component gw, (g; a, b) of the electron-pair density,

(25b)



) 3 K
gii(gsa,b) = |c[* g (|clg; lacl, [be])

:Lg’d i.l b
ja* 7" \la| "

_ 1 w4 . a
R <bl [5

,a 1) (26)

If [.+1;, = odd, however, we do not have such relations
in general.

The total electron-pair density g(q; a, b) is the sum of
both contributions from /. + [;, [, + /, =even and
Le + 1, |, + [, =odd with the coefficients Cy;,,, and
therefore we cannot derive any general yet rigorous re-
lations like Eq. (26). In the Hartree-Fock approximation
(see Eq. 18b), however, all the direct terms g% (q; a, b) as
well as exchange terms gjjﬁ:(q;a,b) with /. + [, = even
obey Eq. (26) precisely, and only the remaining ex-
change terms with /. + [; = odd violate the relation.
The approximate isomorphism (Eq. 3) observed nu-
merically [10, 11, 13, 19] between the intracule A(u) and
extracule d(R) densities for atoms and ions suggests that
the violation of the relation at Eq. (26) due to the ex-
change terms with /,, +/; = odd is not large. If we accept
these numerical results, we reach an approximate iso-
9(q;a,b) 2= g(g;|al, |B]) = |e*g(|c|g; lac], |be])

morphism,
ot ) =G )
=—g( L] ) =—=a( ]z 1) @D
la]* " \lal |6~ \[2] ‘b

a
for the electron-pair density g(g; a, b) of atoms obtained
from Hartree-Fock wave functions and from configura-
tion-interaction wave functions with a predominant
Hartree-Fock configuration. Equation (27) further
predicts relations

(")) = 4" al oy = 1€174G" ) ac el

= |al"{q") 1 /ey = 161"(@") aypp1)
for the electron-pair moments <q”>(a1b>. Special cases of
Egs. (27) and (28) for b = +a are

1 q
9(q; a, +a) %—g<—; 1,1>
ja’ * \la]

(28)

(29)

(4" (0 ra) = lal™(@") 1) (30)
which lead to d(R) = 2*h(2R) and (u") = 2"(R") for the

intracule and extracule properties.
Concluding remarks

We have shown that there exists the general yet rigorous
isomorphism, Egs. (6a) and (6b) for the electron-pair

99

densities and Eq. (9) for the electron-pair moments, due
to the scaling property of the Dirac delta function.
Equations (6a), (6b), and (9) are valid for any wave
functions of atoms and molecules. For atomic systems,
the space reflection symmetry of wave functions, em-
bodied by Eq. (20), further generates approximate but
simplified isomorphism, Eq. (27) for the density, and
Eq. (28) for the moments. The approximate relation
between the intracule and extracule densities suggests
that the electron correlation problem in atoms can be
studied not only by the intracule density but also by the
extracule density. Though the details are not given, the
isomorphism found in this study also results in various
relations in other electron-pair properties such as the
radial and cumulative electron-pair densities and the
coefficients of the Maclaurin expansion of the electron-
pair densities (see [20]). We finally note that the
mathematical structure of the electron-pair densities in
momentum space is exactly the same as that in position
space, and the present isomorphic relations also apply to
the momentum-space electron-pair densities. Explicit
results are simply obtained by replacing the names of
functions and variables in position space with the
corresponding appropriate names in momentum space.
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